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ZK:	Definitions
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ZK:	Definitions

P(x) V
“I	know	x	s.t. f(x)=1”

• Completeness
• P,V	honestà V	accepts	

• Proof-of-Knowledge
• If	P	does not	know	x	à V	rejects

• Zero-Knowledge
• V	learns nothing about x
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What can be proven in	ZK?
Feasability:	NP,	even PSPACE!

Efficiently:	algebraic	languages
(Schnorr,	…,	Groth-Sahai,	…)

SNARKS	(generic)
• Short	proofs,	efficient	verification	J
• Slow	prover	L
• Implementations:	Pinocchio,	libsnark,	

This	talk:
Can	we	construct	efficient	proofs	for	non-

algebraic	languages	such	as

“I	know	x	such	that	SHA(x)=y”?

Two	protocols:
• ZKGC	(from	Garbled	Circuits)
• ZKBoo (from	MPC)
One	application:
• Generic	(post-quantum)	signatures



Example:	Schnorr Protocol

Go	to	Example



More efficient Less efficient

OTP >> SKE >> PKE >> FHE >> Obfuscation

The	Crypto	Toolbox

12

Weaker assumption Stronger assumption



Zero-Knowledge	from	Garbled Circuits
Jawurek,	Ferschbaum,	Orlandi
CCS	2013



Zero-Knowledge	vs Secure	2PC

A B

f,x f,y

f(x,y)

P V
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f(x)=1
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Garbled Circuits
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DeGb
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f

x

e [X] [Y]

y

Correct	if	y=f(x)

Values	in	a	box
are “garbled”

r
[F]

d



Garbled Circuits:	Authenticity

Ev
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En
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[X]

y*	=	f(x)	
OR	

y*	=	⊥



OT
[F]

x e
[X]

([F],e,d)	ßGb(	f,r )

[Y]ßEv([F],[X])

Prover(x) Verifier(	)

(HV)ZKGC	to	prove	f(x)=y

[Y]
Accept	if	De(d,[Y])=y



OT
[F]

x* e
[X]

([F],e,d)	ßGb(	f,r )

(HV)ZKGC	to	prove	f(x)=y

[Y*]

Authenticity!

Prover(?) Verifier(	)

De(d,[Y*])={f(x*),⊥}



OT
[G]

x e
[X]

([G],e,d)	ßGb(	g,r )

[Y]ßEv([G],[X])

(HV)ZKGC	to	prove	f(x)=y

[Y]

Corrupt	V	can	
change	f with	g
breaking	ZK!

Learn	g(x)=De(d,[Y])

Prover(x) Verifier(	)



Garbled circuits with	active security?

How	can the	verifier prove that f	was garbled correctly

(without breaking soundness)?

• Plenty	of	(costly)	solutions	are	known	for	2PC
• Zero-Knowledge

• Cut-and-choose

• Etc.

• Can	we	do	better	for	ZK?



OT
[F]

x e
[X]

([F],e,d)	ßGb(	f,r )

[Z]ßEv([F],[X])

ZKGC	to	prove	f(x)=y

Comm([Y])

rIf	[F]!=Gb(f,r)	
abort

else Open([Y])

Commitment

Active	security	
Using	only	1	GC!

Accept	if	De(d,[Y])=y

Prover(x) Verifier(	)



Recap:	ZK	based on	GC

• The	main idea:

• In	ZK	the	verifier (Bob)	has	no secrets!

• After the	protocol,	Bob	can reveal all	his	randomness.

• Alice	can	simply	check	that	Bob	behaved	honestly	

by	redoing	his	entire	computation.



Privacy-Free Garbled Circuits
Frederiksen,	Nielsen,	Orlandi
EUROCRYPT	2015



Main	idea

• In	2PC	the	garbler	has	secret	input
• GC	privacy	à privacy	of	input

• In	ZK	V	has	no	input	to	protect
• Can	we	get	more	efficient	GC	without	
privacy?

Yes!



Example:	Privacy	Free	
Garbling

Go	to	PFGC



Runtime	(rough	estimates)

• Proof	of	“c=AES(k,m)”	for	secret	k	and	public	(c,m)
• AES:	35k	gates	(7k	ANDs/28k	XORs)
• Communication:	204kB (98%	GC)
• Runtime:
• OT:	29.4ms	(Using	Chou-Orlandi	OT)	(|w|=128)
• Garbling:	721µs	(Using	JustGarble GaXR)
• Eval:	273	µs
• Total (Garble+OT+Eval+Garble)	~	31.2ms	(+network)



Applications

Hu,	Mohassel,	Rosulek
• Sublinear	ZK	(via	ORAM), Crypto	2015
Chase,	Ganesh,	Mohassel,	
• Privacy-Preserving	Credentials,	Crypto	2016
Kolesnikov,	Krawczyk,	Lindell,	Malozemoff,	Rabin,	
• Attribute-Based	KE	with	General	Policies,	CCS	2016
Baum; Katz,	Malozemoff,	Wang;	Afshar,	Mohassel,	Rosulek,		
• Input	validity in	2PC,	SCN	2016;	ePrint;	ePrint
…



ZKBoo:	Faster	Zero-Knowledge	for	Boolean Circuits
Giacomelli,	Madsen,	Orlandi
USENIX	Security	2016



From	ZKGC	to	ZKBoo

• ZKGC	is	inherently	interactive (private	coin,	cannot	use	Fiat-Shamir)	

• IKOS (Ishai,	Kushilevitz,	Ostrovsky,	Sahai)	proposed	in	2007	a	method	
to	get	ZK	from	MPC.	Plugging	the	right	MPC	protocol	one	can	get	ZK	
with	very	good	asymptotic	complexity.

• ZKBoo can	be	seen	as	a	generalization,	simplification	and	
implementation	of	IKOS	with	the	sole	goal	of	practical	efficiency.
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Instead of MPC protocol, we speak about
(2, 3)-decomposition for C :

{Share,Output1,Output2,Output3,Rec}
[

{f (j)1 , f (j)2 , f (j)3 }j=1,...,N

• correct: y = C (x)

• 2-private: 8 e 2 [3] 9 a PPT simulator
Se that perfectly simulate the
distribution of ({wi}i2{e,e+1}, ye+2)
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To	build	ZKBoo,	we	need	to	find	a	suitable
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Example:	the	linear	decomposition

• Computation	in	a	ring	(R,+,·)

• Share(x)
• Get	random	x1,	x2 ß R	
• Let	x3=	x	- x1 - x2

• Rec(y1,y2,y3)
• y	=	y1	+	y2	+	y3

• Add(x1,x2,x3,y1,y2,y3)
• z1	=	x1	+	y1
• z2	=	x2	+	y2
• z3	=	z3	+	y3

•Mul(x1,x2,x3,y1,y2,y3)
• z1	=	x1y1	+	x1y2	+	x2y1	+	r1	- r2
• z2	=	x2y2	+	x2y3	+	x3y2	+	r2	- r3
• z3	=	x3y3	+	x3y1	+	x1y3	+	r3	- r1
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Correctness:
z1+z2+z3	=

(x1+x2+x3)	(y1+y2+y3)

2-privacy:
Any	pair	(zi,zi+1)	is	
uniform	random	
(thanks	to	r1,r2,r3)



ZKBoo Protocol

Public data: C : {0, 1}n ! {0, 1}m (boolean circuit) and y 2 {0, 1}m

Input: x s.t. C(x) = y

e 2 {1, 2, 3}

Check consistency

13 / 19
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Linear	Decomposition:	Consistency	Check

•Mul(x1,x2,x3,y1,y2,y3,r1,r2,r3)
• z1	=	x1y1	+	x1y2	+	x2y1	+	r1	- r2
• z2	=	x2y2	+	x2y3	+	x3y2	+	r2	- r3
• z3	=	x3y3	+	x3y1	+	x1y3	+	r3	- r1

• Verify(.	,x2,x3,.	,y2,y3,.	,r2,r3)
• ?
• z2	=	x2y2	+	x2y3	+	x3y2	+	r2	- r3
• ?
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• Soundness/PoK
• Correctness	of	decomposition
• Commitments	are	binding

• Zero-Knowledge
• 2-privacy	of	decomposition
• Commitments	are	hiding

• Efficiency
• Comm.	and	comp.	complexity	~	#	mul
• Only	very	efficient	crypto	involved	
(secret	sharing,	commitments)



Implementation Results

SHA-1 SHA-256

Serial Paral. Serial Paral.

Prover (ms) 31.73 12.73 54.63 15.95

Verifier (ms) 22.85 4.39 67.74 13.20

Proof size (KB) 444.18 835.91

Soundness error: 2�80

SHA-1 SHA-256
Serial Paral. Serial Paral.

Prover (ms) 18.98 8.12 30.81 12.45
Verifier (ms) 11.68 2.35 34.16 6.77

Proof size (KB) 223.71 421.01

Soundness error: 2�40

Implementation available at https://github.com/Sobuno/ZKBoo

16 / 19



Post-Quantum	Zero-Knowledge	and	Signatures	from	
Symmetric-Key Primitives
Chase,	Derler,	Goldfeder,	Orlandi,	Ramacher,	Rechberger,	Slamanig,	Zaverucha
ACM	CCS	2017



Fiat-Shamir	Heuristic

z=Open(r,x,e)

eß(1..n)

a=Com(r,x)

P(x) V(y)

z=Open(r,x,e)

e=H(a)

a=Com(r,x)

Reject if
Ver(a,e,z)=0

Reject if
Ver(a,e,z)=0
with	e=H(a)

“I	know	x	s.t. f(x)=y”



Signatures	from	Fiat-Shamir

Gen
• sk :	x
• vk :	y	=	OWF(x)	

Sig(sk,m)
• a =	Com(r,x)
• z	=	Open(r,x,H(m,a))
•output	(a,z)

Ver(vk,m,(a,z))
• reject if:

Ver(a,H(m,a),z)=0



Signatures	from	ZKB++	+	LowMC

Candidate	for	PQ	signature	
from	symmetric primitive	

only!

LowMC
Block	cipher with	low
AND	Complexity (<1000)

Different instances give	different
tradeoffs between comp./comm.	
overhead



Picnic	
Security	in	QROM	using	Unruh’s	Transform
• Fiat-Shamir	is	not	provably	
secure	vs.	quantum	adversary
• Cannot	program	RO
• Cannot	rewind	adversary

• Unruh	transform	
(EUROCRYPT’15)	is	secure	in	
QROM
• ZKBoo/ZKB++	can	be	optimized	
for	Unruh,	only	~1.5x	larger!
• Instead	of	4x

ze

e=H(a)

a

ze

e=H(a’)

a’=
(a,G(z0),G(z1),G(z2))

Fiat-Shamir Unruh



Flexible	design!
Ring/Group	Signatures

• Sign(pk0,pk1,skb,	m)à s
• Ver(pk0,pk1,m,s)à accept

• Indistinguishability:
Sign(pk0,pk1,sk0,	m)	≈	
Sign(pk0,pk1,sk1,	m)

• Prove	in	ZK	that	
”I	know	sk :	pk0=f(sk)	or	pk1=f(sk)”

• See
• PQ	ZK	Proofs	for	Accumulators	with	
Applications	to	Ring	Signatures	
from	Symmetric-Key	Primitives
Derler,	Ramacher,	Slamanig
• PQ	EPID	Group	Signatures	from	
Symmetric	Primitives
Boneh,	Eskandarian,	Fisch
• Improved	NIZK	with	Applications	to	
PQ	Signatures
Katz,	Kolesnikov,	Wang



Young	design!	ZK	proofs	are	improving!
ZKBoo,	ZKB++,	Ligero,	KKW,	…
• Any	improvements	in	the	ZK	proof	leads	to	
better	signatures!
• Ligero:	Lightweight	Sublinear	Arguments	
Without	a	Trusted	Setup
Ames, Hazay, Ishai,
Venkitasubramaniam:
• Improved	NIZK	with	Applications	to	PQ	
Signatures
Katz,	Kolesnikov,	Wang

Figure	from	KKW



NIST	Submission:

Picnic
A	Family	of	Post-Quantum	Secure	Digital	Signature	
Algorithms

Project	page:	https://microsoft.github.io/Picnic/

(Next few slides	from	Greg’s talk	at	NIST	Workshop)

Chase,	Derler,	Goldfeder,	Orlandi,	Ramacher,	Rechberger,	Slamanig,	Zaverucha







Also,	experiments	with	HSM	and	inclusion	in	OpenVPN Post-Quantum	fork



Conclusions	and	directions
After	>30	years	of	ZK	we	have	the	first	
truly	efficient	protocols for	generic	
statements.

Many	applications	are	enabled	by	
efficient	ZK	for	arbitrary	circuits.

And	I	expect	many	more	to	come!

ZKGC	vs	ZKBoo?
• ZKBoo allows	Fiat-Shamir	J
• ZKBoo does	not	need	OT	J

The	end	of	ZKGC?
• Are	there	better	privacy-free	GCs?

Improving	MPC	based	ZK	proofs?
• ZKBoo,	ZKB++,	Ligero,	KKW,	
[your	name	here?]



Example:	Schnorr Protocol



Example:	Schnorr Protocol

z=xe+r

e

a=gr

P(x) V“I	know	x	s.t. gx=h”

rß(1,p)

eß(1,p)

if	hea=gz

else

(Honest Verifier)	Zero-Knowledge

The	transcript	can be simulated
without knowing	x	
(hence,	it	contains no informaiton about x)

Simulator
1. Pick e	ß (1,p)	
2. Pick z	ß (1,p)
3. Compute a	=	he/gz

4. Output	(a,e,z)



Example:	Schnorr Protocol

z=xe+r

e

a=gr

P(x) V“I	know	x	s.t. gx=h”

rß(1,p)

eß(1,p)

if	hea=gz

else



Example:	Schnorr Protocol

z=xe+r

e

a=gr

P(x) V“I	know	x	s.t. gx=h”

rß(1,p)

eß(1,p)

if	hea=gz

else

Completeness

gz =	gxe+r =	hegr =	hea



Example:	Schnorr Protocol

z=xe+r

e

a=gr

P(x) V“I	know	x	s.t. gx=h”

rß(1,p)

eß(1,p)

if	hea=gz

else

Proof-of-Knowledge
Special	Soundness:
From	two accepting transcripts

(a1,	e1,	z1),	(a2,	e2,	z2)	
with	a1=a2 we can extract x.

Solve:
z1	=	xe1 +	r,
z2	=	xe2 +	r

(P	can answer 2	different challengesà
P	knows x)



Example:	Schnorr Protocol

Go	Back



Example:	Privacy	Free	
Garbling



Garbling	a	Circuit	:	([F],e,d)ß Gb(f)
X10,X11 • Choose 2	random keys Xi0,Xi1 for	

each input	wire

• For	each gate	g	compute
• (gg,K0,K1)ß Gb(g,L0,L1,R0,R1)

• Output
• e=(Xi0,Xi1)	for	all	input	wires
• d=(Y0,Y1)
• [F]=(ggi)	for	all	gates	i	

X20,X21		…

Y0,Y1

L0,L1 R0,R1

K0,K1



Encoding	and	Decoding

[X] =	En(e,x)
• e={	Xi0, Xi1}
• x=	{	x1,…,xn }
• [X]={X1x1,…,Xnxn}

y=De(d,[Y])
• d	=	{	Y0,Y1	}
• [Y]	=	{	K	}
• y=
• 0	if	K=Y0,	
• 1 if	K=Y1,	
• “abort” else	



Evaluating	a	GC	:	[Y]ß Ev([F],[X])
X1 • Parse	[X]={X1,…,Xn}	//	x	is	known

• Parse [F]={ggi}

• For	each gate	i compute
• Kg(a,b) ß Ev(ggi,L,a,R,b)	//a,b known!

• Output
• Y			//y	is	known!

X2………

Y

L R

K

gg1

gg2

ggn

ggi

ggi ggi ggi ggi

ggi ggi

ggi



Notation
• A	(privacy-free)	garbled gate	is	a	
gadget that given	two inputs	keys
gives	you the	right	output	key (and	
nothing else)

• (gg,Z0,Z1)	ß Gb(g,L0,L1,R0,R1)
• Zg(a,b) ß Ev(gg,L,a,R,b)

• //and	not	Z1-g(a,b)

gg

L0,L1 R0,R1

Z0,Z1



Yao	Garbling

C

C1	=	H(L0,R0)	⊕ K0

C2	=	H(L0,R1)	⊕ K0

C3	=	H(L1,R0)	⊕ K0

C4	=	H(L1,R1)	⊕ K1

70

L R

K



Yao	Garbling

C

C1	=	H(L0,R0)	⊕ K0

C2	=	H(L0,R1)	⊕ K0

C3	=	H(L1,R0)	⊕ K0

C4	=	H(L1,R1)	⊕ K1

71

L R

K

If	output	is	0	
the	evaluator
should	not	
know	why!!!



Privacy-Free	Garbling

C

C1	=	H(L0,R0)	⊕ K0

C2	=	H(L0,R1)	⊕ K0

C3	=	H(L1,R0)	⊕ K0

C4	=	H(L1,R1)	⊕ K1

72

L R

K

Evaluator	
knows	plain	

inputs/outputs



Privacy-Free	Garbling

C

C1	=	H(L0)	⊕ K0

C2	=	H(L0)	⊕ K0

C3	=	H(L1,R0)	⊕ K0

C4	=	H(L1,R1)	⊕ K1

73

L R

K

C1=C2



Privacy-Free	Garbling

C

C1	=	H(L0)	⊕ K0

C3	=	H(R0)	⊕ K0

C4	=	H(L1,R1)	⊕ K1

74

L R

K

Output	is	0	
If	either	input	is	0



Privacy-Free	Garbling

C

K0 =	H(L0)

C =	H(R0)	⊕ K0

K1	=	H(L1,R1)

75

L R

K

Standard
”row-reduction”	

technique

Only	1	
ciphertext!



Privacy-Free	Evaluation

Eval(gg,	L,a,R,b)
• If	a=0
• Output	K0 =	H(L0)

• If	b=0
• Output	K0 =	C	 ⊕ H(R0)

• else
• Output	K1=H(L1,R1)

76

gg

C=	H(R0)	⊕ K0



Example:	Privacy	Free	
Garbling

Go	Back


