Fast Zero-Knowledge Proofs
and Post-Quantum
Signatures

Claudio Orlandi — Aarhus University

@claudiorlandi

Meliisa Chase (Microsoft)
David Derler (TU Graz)

Tore Frederiksen (BIU)

Irene Giacomelli (UW-Madison)
Steven Goldfeder (Princeton)
Marek Jawurek (SAP)

Florian Kerschbaum (SAP)

e Jesper Madsen (AU)

e Jesper Buus Nielsen (AU)
Sebastian Ramacher (TU Graz)
Christian Rechberger (TU Graz, DTU)
Daniel Slamanig (TU Graz)

Greg Zaverucha (Microsoft)

Motivation: Authentication

“Iam Claudio”

“I know my password”

“Here is my Pa55w0rD”

>

v

>

Motivation: Authentication

“Iam Claudio”

>

“Here is my Pa55w0rD”

Y .

y “I'am Claudio”

>

“Here is my Pa55w0rD”

y .

Motivation: Zero-Knoweldge Authentication

“am Claudio”

g
a

<

<

d

v

/K: Definitions

“I know x s.t. f(x)=1"

Only P knows x

PV know f

/K: Definitions

 Completeness
* PV honest = V accepts

“I know x s.t. f(x)=1"

4

g
a

/K: Definitions

E Completeness
“I know x s.t. f(x)=1" * PV honest = V accepts

a* * Proof-of-Knowledge

« : * If P does not know x =2 V rejects

/K: Definitions

“I know x s.t. f(x)=1"

 Completeness
* PV honest = V accepts

‘ a ’ * Proof-of-Knowledge
‘ q * If P does not know x = V rejects
d >
e Zero-Knowledge
« v * VV learns nothing about x

What can be proven in ZK?

Feasability: NP, even PSPACE! This talk:

Can we construct efficient proofs for non-

ici - igebraic | h
Efficiently: algebraic languages algebraic languages such as

(Schnorr, ..., Groth-Sahai, ...) “I know x such that SHA(x)=y”?

SNARKS (generic) Two protocols:

e ZKGC (from Garbled Circuits)
* Slow prover ® * ZKBoo (from MPC)
* Implementations: Pinocchio, libsnark, One application:

* Generic (post-quantum) signatures

Example: Schnorr Protocol

Go to Example

The Crypto Toolbox

o

| WANT TO Stronger assumption
BELIEVE

Weaker assumption

OTP >> SKE >> PKE >> FHE >> Obfuscation

More efficient Less efficient

12

Zero-Knowledge from Garbled Circuits

Jawurek, Ferschbaum, Orlandi
CCS 2013

/ero-Knowledge vs Secure 2PC

Garbled Circuits Values in a box
are “garbled”

Correct if y=f(x)

Garbled Circuits: Authenticity
d

r

 ——

f

_

(HV)ZKGC to prove f(x)=y
Verifier()
e ([F],e,d) €<Gb(fr)

Prover(x)

[Y]<Ev([F], [X])

4 Accept if De(d,[Y])=y

(HV)ZKGC to prove f(x)=y
Prover(?) Verifier()

([F],e,d) €<Gb(fr)

g De(d,[Y*])={f(x*), L}

Authenticity!

(HV)ZKGC to prove f(x)=y

Prover(x)

[YI<Ev([G],[X])

Verifier()
([Gl,e,d) €Gb(g,r)

Learn g(x)=De(d,[Y])

Corrupt V can
change f with g
breaking ZK!

Garbled circuits with active security?

How can the verifier prove that f was garbled correctly

(without breaking soundness)?

 Plenty of (costly) solutions are known for 2PC

e Zero-Knowledge
* Cut-and-choose

* Etc.

e Can we do better for ZK?

/KGC to prove f(x)=vy

Prover(x) Verifier()

([F],e,d) €<Gb(fr)

Commitment

[Z] <Ev([FL[X])

If [F]!=Gb(f,r)
abort

else

Accept if De(d,[Y])=y

Active security
Using only 1 GC!

Recap: ZK based on GC

* The main idea:
* In ZK the verifier (Bob) has no secrets!
» After the protocol, Bob can reveal all his randomness.

 Alice can simply check that Bob behaved honestly

by redoing his entire computation.

Privacy-Free Garbled Circuits

Frederiksen, Nielsen, Orlandi
EUROCRYPT 2015

Main idea

* In 2PC the garbler has secret input
* GC privacy =2 privacy of input

* In ZKV has no input to protect
* Can we get more efficient GC without
privacy?
Yes!

Prover(x)

[21<EV(FLIX) [l commiz))

If [F]!'=Gb(f,r)
abort
else

Open([Z])

Verifier(')
([F1,e,d) €Gb(f,r)

Accept if De(d,[Z])

Example: Privacy Free
Garbling

Runtime (rough estimates)

* Proof of “c=AES(k,m)” for secret k and public (c,m)
» AES: 35k gates (7k ANDs/28k XORs)

« Communication: 204kB (98% GC)

* Runtime:
e OT: 29.4ms (Using Chou-Orlandi OT) (|w]|=128)
e Garbling: 721pus (Using JustGarble GaXR)
e Eval: 273 pus

 Total (Garble+OT+Eval+Garble) ~ 31.2ms (+network)

Applications

Hu, Mohassel, Rosulek

 Sublinear ZK (via ORAM), Crypto 2015

Chase, Ganesh, Mohassel,

* Privacy-Preserving Credentials, Crypto 2016

Kolesnikov, Krawczyk, Lindell, Malozemoff, Rabin,

* Attribute-Based KE with General Policies, CCS 2016
Baum; Katz, Malozemoff, Wang; Afshar, Mohassel, Rosulek,
* Input validity in 2PC, SCN 2016; ePrint; ePrint

/KBoo: Faster Zero-Knowledge for Boolean Circuits

Giacomelli, Madsen, Orlandi
USENIX Security 2016

From ZKGC to ZKBoo

e ZKGC is inherently interactive (private coin, cannot use Fiat-Shamir)

* IKOS (/shai, Kushilevitz, Ostrovsky, Sahai) proposed in 2007 a method
to get ZK from MPC. Plugging the right MPC protocol one can get ZK
with very good asymptotic complexity.

» ZKBoo can be seen as a generalization, simplification and
implementation of IKOS with the sole goal of practical efficiency.

To build ZKBoo, we need to find a suitable

(2, 3)-decomposition for C:

{Share, Output;, Output,, Outputs, Rec}

U
(9D D 0y

To build ZKBoo, we need to find a suitable

(2, 3)-decomposition for C:

{Share, Output;, Output,, Outputs, Rec}

U
EALN AL 2 VI

To build ZKBoo, we need to find a suitable

(2, 3)-decomposition for C:

{Share, Output;, Output,, Outputs, Rec}

U
EALN AL 2 VI

To build ZKBoo, we need to find a suitable

(2, 3)-decomposition for C:

1 1 1
fi f f3
1 1 1
Wj w; W3
2 2 "
fi f5 f3
N ‘N N
W, W, W3

{Share, Output;, Output,, Outputs, Rec}

U
EALN AL 2 VI

N

1,..

{Share, Output;, Output,, Outputs, Rec}
U
{fl(J), f2(J)7]%(J)}j

To build ZKBoo, we need to find a suitable
(2, 3)-decomposition for C

= = = e - = = = = = e = = E— e = = = e o E—e— e

™
| I ..w__
| Om — ™ <»n a
| 3 2 s
- J o
lllllllllllllllllllllll N
| I ._mw.
| (@ X\ — A\ N2 | o
| 3 2 s
- J o

IIIIIIIIIIIIIIIIIIIIIII

|

O — = —

Output;

To build ZKBoo, we need to find a suitable

(2, 3)-decomposition for C:

{Share, Output;, Output,, Outputs, Rec}

U
{fl(J), f2(J)7 G(J)}jzl,...,N

| \ | \ | \
0 | 0 | 0 |
Wy w0 W
| ! | ! | !
| ! | ! | !
| ! | ! | !
| ! | ! | !
| ! | ! | !
| : | : | :
| 1 I 1 | 1
- Wi : - W) : . W3 :
| | |
| . ! |] ! | . !
| . ! | . ! |) !
S Lo Lo
| ! | ! | !
| : ! | : ! | : !
I
oy
| | |
wl L wl Wl
Output; Output, Output,
y?
Y1
Rec

e correct: y = C(x)

e 2-private: Ve € [3] 3 a PPT simulator
Se that perfectly simulate the

distribution of ({W;}icfe et1},Yet2)

Example: the linear decomposition

* Computation in a ring (R,+,-) *Add(x,X,X3,Y.,VY>Y3)
*Z;=X1tY;
° 22 = XZ + y2

*Z3=231Y;

* Share(x)
* Get random x,, x, € R
* Llet X;= X - X; - X,

* MUI(X1;X2;X3/y1zy2/y3)
*Z;=X1Y XY, XYt -1,
© Z,= XYt X3+ XY, + My Ig
*Z3=X3Y3t X3Y T XYzt 31

* Rec(y,Y»Y3)
‘Y=Y, tY,tV;

Correctness: omposition
Zl+22+23 —
(X +X,+X3) (V1+Y,+V3) * Add(x,,X,,X3,Y1,Y Y3

*Z;=X11Y1
*Z,=X1Y;
* 2357373
2-privacy:
Any pair (z,z,,,) is * Mul(Xy,X5X3,Y1,YY3)
uniform random *Z1=XY 1t XYt XY -1
(thanks to r,r,,r;) P Z2= XYt XYzt XsY,t r- 13

*Z3=X3Y3+ X3yt XYzt I3-1;

Public data: C : {0,1}" — {0,1}" (boolean circuit) and y € {0,1}"

Input: x s.t. C(x) =y

Public data: C : {0,1}" — {0,1}" (boolean circuit) and y € {0,1}"

Input: xs.t. C(x) =y

/ X\\
i
filog s
W><W%></\Wé
7l B 3
wi - w Wé\f
Sy v vV
yl\ﬁ/ys

y

Public data: C: {0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

a4 | o
Input: xs.t. C(x) =y

777777777777777777777777777

/\ ,,,,,,, \ [] L] []
Al
Al s s >
| A EH B
wi W wi . 1 ‘
72 73 72 . - -

,,,,,,,,,,,,,,,,,,,,,,,,,,,

W{V wév Wév yi y2 Y3
Sy v L
Y1 Y2 Y3

Public data: C: {0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

8 e
Input: xs.t. C(x) =y

777777777777777777777777777

/\ ,,,,,,, \ [] L] []
Al
Al s >

H B N
wi W, wi L ‘
gl sl B < E OB m

W{V wév Wév yi y2 Y3
Sy v L
Y1 Y2 ys3

Public data: C: {0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

Input: xs.t. C(x) =y
x N S |
e TN wiooow
W(1><W3><W§
gl s >
1T wiooowo o
Wi _wi o wi : .
%>< € c {17 27 3} : :
2 ! 2| ! 2| l
fi ! 3 | ! f3 K W{V i | Wé\f .
wh wl wl Y1 Y2 Y3
,,,,,,,,, >
¥ ¥ v
Y1 Y2 Y3

Public data: C: {0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"

-

o

Input: xs.t. C(x) =y

/ X\\
W(1><V8><Wg
il B
W><W%><W§
AR 13

W W

e Vo |

yl\t‘ﬁ/y?)
Yy

~ -
>
e €{1,2,3}
<
>
J L

T .
% L
gl
ww
S S S
Y1 Y2 ys

Check consistency

Linear Decomposition: Consistency Check

° |V|U|(Xl,Xz,X3,y1;y2;y3lr11r2’r3)
)= XY T XYt XYt -
* Z, = XY T XYzt X3y, - I
® Z3= X3Y3+ X3yt X1y3+ r3- 1y

* Verify(. ,X5,X3,- ,Y5,Y3,- s 13)
«?

o

/KBoo

@ Sou nd nESS/POK Public data: C:{0,1}" — {0,1}™ (boolean circuit) and y € {0,1}"
* Correctness of decomposition g 8
e Commitments are binding put: xs.t. C)=y | |

e Zero-Knowledge
e 2-privacy of decomposition
* Commitments are hiding

e Efficiency

« Comm. and comp. complexity ~ # mul o R R EG ft
o . S IR IR | — Y1 Y2 Y3
* Only very efficient crypto involved i ey T

(secret sharing, commitments) y Check consistency

. J . J

SHA-1 SHA-256
Serial | Paral. | Serial | Paral.
Prover (ms) 31.73 | 12.73 | 54.63 | 15.95
Verifier (ms) 22.85 439 | 67.74 | 13.20
Proof size (KB) 44418 835.91
Soundness error; 2789
SHA-1 SHA-256
Serial | Paral. | Serial | Paral.
Prover (ms) 18.98 | 8.12 | 30.81 | 12.45
Verifier (ms) 11.63 2.35 | 34.16 6.77
Proof size (KB) 223.71 421.01

Soundness error: 240

Post-Quantum Zero-Knowledge and Signatures from
Symmetric-Key Primitives

Chase, Derler, Goldfeder, Orlandi, Ramacher, Rechberger, Slamanig, Zaverucha
ACM CCS 2017

Fiat-Shamir Heuristic

“I know x s.t. f(x)=y” V(y)

a=Com(r,x)

a=Com(r,x)

>

>

e<(1..n) e=H(a)

<

z=0pen(r,x,e) z=0pen(r,x,e)

Reject if
Ver(a,e,z)=0
with e=H(a)

Reject if
Ver(a,e,z)=0

Signatures from Fiat-Shamir

Gen
°sk : X
*vk : y = OWF(x)

Sig(sk,m) Ver(vk,m,(a,z))

*a = Com(rx) *reject if:

e 2 = Open(r,x,H(m,a)) Ver(a,H(m,a),z)=0
e output (a,z)

Signatures from ZKB++ + LowMC

LowMC Gen Sgn Verlty TR ol
en gn eri S P g
Block cipher with low Scheme (ms] _[ms] _[ms] [bytes] [bytes] [bytes] oo
; Fish-1-316 0.01 364.11 201.17 32 64 108013 ROM
AND Complexrty (<1OOO) Fish-10-38 0.01 2973 1746 32 64 118525 ROM
Fish-42-14 0.01 1327 7.45 32 64 152689 ROM
. . . . Picnic-10-38 0.01 31.31 16.30 32 64 195458 QROM
Different instances give different MQ Spass 096 721 5.17 32 74 40952 ROM
tradeoffs between Comp_/comm_ SPHINCS-256 0.82 1344 058 1088 1056 41000 SM
Overhead BLISS-I 4416 0.12 002 2048 7168 5732 ROM
Ring-TESLA* 16k 006 0.03 12288 8192 1568 ROM
TESLA-768 48k 0.65 0.36 3216k 4128k 2336 (Q)ROM
FS-Véron n/a n/a n/a 32 160 129024 ROM

SIDHp751 16.41 73k 5.0k 48 768 141312 QROM

Candidate for PQ signature

from symmetric prim itive Table 1: Timings and sizes of private keys (sk), public
keys (pk) and signatures (¢). *An errata to [3] says that

on ly / this parameter set is not supported by the security analy-
sis (due to a flaw in the analysis).

Picnic
Security in QROM using Unruh’s Transform

* Fiat-Shamir is not provably Fiat-Shamir Unruh
secure vs. quantum adversary
* Cannot program RO q’=
e Cannot rewind adversary
1 a (a, G(Zo)/ G(z,),G(z,))
* Unruh transform , ,
(EUROCRYPT’15) is secure in ,
QROM e=H(a) e=H(a’)
> >
» ZKBoo/ZKB++ can be optimized
for Unruh, only ~1.5x larger! Ze , Ze ,
* Instead of 4x

-lexible design!
Ring/Group Signatures . See

* PQ ZK Proofs for Accumulators with
* Sign(pkoy,pk,,sk,, m)=> s Applications to Ring Signatures
from Symmetric-Key Primitives
Derler, Ramacher, Slamanig

* Ver(pk,,pk,,m,s)=> accept
* PQ EPID Group Signatures from

* Indistinguishability: Symmetric Primitives
Sign(pk,, pk,,sk,, M) = Boneh, Eskandarian, Fisch
Sign(plo,pky,sky, m) * Improved NIZK with Applications to
PQ Signatures
* Prove in ZK that Katz, Kolesnikov, Wang

”I know sk : pk,=f(sk) or pk,=f(sk)”

Young design! ZK proofs are improving!
/KBoo, ZKB++, Ligero, KKW, ...

* Any improvements in the ZK proof leads to
better signatures! - - Ligero --- ZKB++ — Ours,n—16 — Ours,n — 64

104

* Ligero: Lightweight Sublinear Arguments
Without a Trusted Setup
Ames, Hazay, Ishai,
Venkitasubramaniam:

—_
)
w

Proof Size (KB)

* Improved NIZK with Applications to PQ
Signatures
Katz, Kolesnikov, Wang

[a—
[a)
[\V]

103 104 10° 108
Number of AND Gates (|C|)

Figure from KKW

NIST Submission:

Picnic

A Family of Post-Quantum Secure Digital Signature
Algorithms

Project page: https://microsoft.github.io/Picnic/

(Next few slides from Greg’s talk at NIST Workshop)

Performance: Key and Signature Size

Signature and key sizes (bytes)
mm

Picnic-L1-FS 34,000
Picnic-L1-UR 32 16 53,929
Picnic-L3-FS 48 24 76,740
Picnic-L3-UR 48 24 121,813
Picnic-L5-FS 64 32 132,824

Picnic-L5-UR 64 32 209,474

Performance: Timings

Optimized Implementation (ms), Intel(R) Core(TM) i7-4790 CPU
3.60GHz

Parameter Set | Keygen __|Sign ______|Verify ____

Picnic-L1-FS 0.00 1.95 1.36
Picnic-L1-UR 0.00 2.64 1.91
Picnic-L3-FS 0.01 6.61 4.63
Picnic-L3-UR 0.01 8.84 6.29
Picnic-L5-FS 0.02 14.71 10.64

Picnic-L5-UR 0.02 18.67 13.60

TLS Experiments

Are there challenges to using Picnic in TLS? Ciphersuite | Page | Meanfetch | Mean fetch
We added Picnic to the Open Quantum Safe library (OQS), the LG Size time (seconds) | time (seconds)
45B

Slow network Fast network
0.470 0.299

OQS fork of OpenSSL and Apache web server

Experiment: ECDHIE-

ECDSA
Use Picnic-signed X.509 certificates certifying Picnic keys
L1-FS parameter set (not PQ) 100K 1.226 0.452
Use Picnic certificates to authenticate TLS 1.2 connections LWEFRODO- 45B 0.578 0.366
Fetch HTML files RSA
Performance, client-side latency: 100K 1.335 0.518
For 45B files: increase of 1.4x to 1.7x LWEFRODO- 45B 0.984 0.513
For 100KB files: increase of 1.1x to 1.3x PICNIC
Cha”enges: 100K 1.733 0.594
TLS 1.2 has limit of 2'¢ — 1 bytes/signature: too short for our SIDH-RSA 45B 0.655 0.385
higher security parameter sets 100K 1370 0,541
SIDH-PICNIC 45B 1.084 0.523
100K 1.738 0.600

Also, experiments with HSM and inclusion in OpenVPN Post-Quantum fork

Conclusions and directions

After >30 years of ZK we have the first
truly efficient protocols for generic
statements.

Many applications are enabled by
efficient ZK for arbitrary circuits.

And | expect many more to come!

ZKGC vs ZKBoo?
e ZKBoo allows Fiat-Shamir ©
 ZKBoo does not need OT ©

The end of ZKGC?
* Are there better privacy-free GCs?

Improving MPC based ZK proofs?

 /KBoo, ZKB++, Ligero, KKW,
[your name here?]

Example: Schnorr Protocol

P(X) “| know x s.t. g*=h" Example: Schnorr Protocol
} (Honest Verifier) Zero-Knowledge
ré(llp) a:gr
> The transcript can be simulated
without knowing x
o e <&(1,p) (hence, it contains no informaiton about x)
<
Simulator
Z=Xe+r .
. 1. Picke € (1,p)
/ if hea=g? 2. Pickz € (1,p)
—_ e Z
X else 3. Compute a = h®/g
) 4. Output (a,e,z)

2040 “l know x s.t. g=h” Example: Schnorr Protocol

>

ré(llp) a:gr
>
e e<(1,p)
<
Z=Xe+r
>
v/ ifhéa=g*

)< else

2040 “l know x s.t. g=h” Example: Schnorr Protocol

>

r<(1,p) a=g’ : Completeness
e e <(1,p) Z=0gX""=neqg"' = h°
| g’=g hég" = héa
Z=Xe+r
>
v/ ifhéa=g*

)< else

2040 “l know x s.t. g=h” Example: Schnorr Protocol
>
Proot-of-Knowledge—
r&(1,p) _ Special Soundness:
a=g , From two accepting transcripts
(all el/ 21)/ (02/ ez; 22)
o e &(1,p) with a,=a, we can extract x.
<
Solve:
Z=Xe+r Z,=xe,+1r,
' Z,=Xe,+r
v/ ifhéa=g*
)< | (P can answer 2 different challenges 2>
p €is€ P knows x)

Example: Schnorr Protocol

Go Back

Example: Privacy Free
Garbling

Garbling a Circuit : ([F],e,d) < Gb(f)

X1, X1 o
Olexz * Choose 2 random keys X', X', for
. Lg each input wire
* For each gate g compute
Lo, L4 Ro/Ry § Ko Ky)€ Gb(g, Ro,R1)
KoKy ® OQutput
« e=(X',,X,) for all input wires

* d=(Y,Y,)
e [F]=(gg') for all gates i

Encoding and Decoding

[X] = En(e,x) y=De(d,[Y])
* e={ Xy, X'} cd={Y,Y,}
* X=1{ Xy, X, } e [Y]={K}
. [X]={X1X1,...,ann} ° y=
. 0if K=Y,
. 1if K=Y,

e “gbort” else

Evaluating a GC: [Y]< Ev([F],[X])

1 ;

\

/ \

e Parse [X]={X},..., X"} // xis known

) \) \ * Parse [F|={gg'}

gg’ gg' || gg
L\ [L\] IJ
L R
gg’ gg'| |gg'
K [.I [VJ
gg gg
|
gg"

* For each gate i compute
* Kyab) < Ev(gg,L,a,R,b) //a,b known!

* Output
*Y //yis known!

Notation

* A (privacy-free) garbled gate is a
gadget that given two inputs keys
LoiLy Ro/R1 gives you the right output key (and

nothing else)

* (ggizmzl) é Gb(gILOILllROIRl)
* Zy,p) € Ev(gg,L,a,R,b)

* //and not Z, .,

ZOlzl

Yao Garbling

C, = H(Ly,Ry) © K,

C,=H(Ly,R,) @K,

C;=H(L,,R;) ® K,

C,=H(L,,R;) ®K,

Yao Garbling

C
C,=H(Ly,R,) ©K,

If outputis O
the evaluator

C,=H(Lo,R,) @ K,

should not
C3=H(Ly,Ry) ® Ky know Why./!!
C,=H(L,R,) @K,

71

Privacy-Free Garbling

C
C;=H(LyRo) @ Ky Evaluator
C, = H(Ly,R,) ® K, knows plain

inputs/outputs

Cs=H(L,Ry) @K,

C,=H(L,,R;) ®K,

72

Privacy-Free Garbling

C, = H(Ly) ® K,

C, = H(L,) @ K,

Cs=H(L,Ry) @K,

C,=H(L,,R;) ®K,

73

Privacy-Free Garbling

Output is O

If either input is O

C;=H(R,) ® K,

74

Privacy-Free Garbling

C
K, = H(L,)
’ ’ Standard
“row-reduction”
C=H(Ry) ® K technique
K,=H(L,R,)

Only 1

ciphertext!

75

Privacy-Free Evaluation

Eval(gg, L,a,R,b)

* Ifa=0 C=H(R,) ® K,

* Output K, = H(L,)
e If b=0

* Output K,=C @ H(R,)
* else

* Output K,=H(L,R,)

Example: Privacy Free
Garbling

